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Synthesis of guaiane sesquiterpenoids by a ring-closing
metathesis annulation sequence
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Abstract—A new route for the synthesis of guaiane and nor-guaiane sesquiterpenoids is described, using a ring-closing metathesis
annulation reaction sequence on a chiral enantiopure cycloheptenone derived from (R)-(—)-carvone.
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The guaianes 1 and nor-guaianes 2 are sesquiterpenes
with a perhydroazulene carbon skeleton 3 (Fig. 1).!
Combinations of fused five- and seven-membered ring
systems are also common among naturally occurring
diterpenes® and sesterterpenes.® The wide spectrum of
biological activities allied with structural complexity
make these compounds interesting targets for total syn-
thesis. Traditional synthetic approaches to perhydroazu-
lene structures® involve the contraction of six-membered
ring starting materials to cyclopentanoids followed
by annulation, or more rarely expansion to cyclohepta-
noids and annulation. Other approaches include
intramolecular [3 + 2]Pd-catalyzed cycloaddition,> pho-
tochemical rearrangement of the eudesmane frame-
work,® and dichloroketene cycloaddition-diazoalkane
ring expansion.’

Among the few annulation methodologies for cyclohepta-
noids we have not found any examples describing the
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Figure 1. Guaiane 1, nor-guaiane 2, and perhydroazulene 3 carbon
skeletons.
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use of ring-closing metathesis (RCM) reactions for the
synthesis of the perhydroazulene carbon skeleton. The
Mehta group have however developed methodology
for the seven-membered ring annulation of cyclopenta-
noids utilizing the RCM reaction.®?

The RCM reaction!® has become over the last decade a
very powerful tool for the synthesis of many complex
ring systems, following upon the development of im-
proved ruthenium carbene complexes.!! First- 4 and sec-
ond-generation 5, 6 Grubbs’ catalysts (Fig. 2) are the
most frequently used in these olefin metathesis reactions
because of their availability, experimental simplicity,
efficiency, and functional group tolerance.

In this paper, we describe a new approach to sesquiter-
penes of the guaiane group, using the ring-closing
metathesis reaction as the key step of the annulation
of an enantiopure cycloheptenone.

Previously, we have shown that enantiomeric cyclohept-
enones can be prepared by enantiodivergent ring
expansions of simple p-menthane monoterpenes. The
(R)-(+)-6-isopropenyl-3-methyl-cycloheptenone (7) can
be readily obtained from (R)-(—)-carvone in four
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Figure 2. Grubbs’ olefin metathesis catalysts.
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Scheme 1. Reagents and conditions: (a) #-BuOK, #-BuOH, allyl
chloride, rt, 1.5h; (b) ~BuOK, #-BuOH, allyl bromide, rt, 1.5h; (c)
Grubbs’ catalyst 4 (4mol%), CH,Cl,, rt, 10h.

steps.'? Furthermore, treatment of 7 with -BuOK in ¢-
BuOH and allyl chloride at room temperature (Scheme
la) furnished the mono-allylated compound 8 as the
major product (43% yield) and trace quantities of the
bis-allylated product 9.3 Use of more reactive allyl bro-
mide under the same conditions (Scheme 1b) gave the
bis-allylated compound 9 in 68% yield.

Although mono-allyl 8 is required for elaboration into
the guaianes, the easy preparation of bis-allyl 9 lead us
to test the RCM reaction (Scheme 1c) with a view to
the formation of the spiro[4.6Jundecane carbon skeleton
as found in ingenol.'* Reaction of 9 (52mM) with
Grubbs’ catalyst 4 (4mol%) in CH,Cl, at room temper-
ature under N, furnished a 90% yield of spiro com-
pound 10 after 10h of reaction.'?

Reaction of 8 with standard solutions of vinyl and iso-
propenylmagnesium bromide in THF gave to our sur-
prise, the symmetrical ethers 11 and 12 as major
products (Scheme 2), in 56% and 49% yield, respectively,
when the reaction quench was realized with aqueous
ammonium chloride. Quenching with water furnished
compounds 13 and 14 in 95% and 90% crude yields,
and in 25% and 32% yields after purification.'®

When 13 and 14 were submitted to the RCM reaction
(Scheme 3) no products were observed, even under much
more drastic conditions, with recovery of starting mate-
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Scheme 2. Reagents and conditions: (a) vinylmagnesium bromide,
THF, —78°C, 1h; (b) isopropenylmagnesium bromide, THF, —78°C,
1h.
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Scheme 3. Reagents and conditions: (a) Grubbs’ catalyst 4 (5-
20mol%), CH,Cl,, rt, reflux, 24h; (b) PTSA, acetone, reflux, 3h; (c)
Grubbs’ catalyst 4 (Smol%), CH,Cl,, rt, 3h.

rials. The presence of free polar groups close to the dou-
ble bonds is known to inhibit the RCM reaction with
Grubbs’ catalyst 4.7

The negative influence of the hydroxyl group in the
RCM reaction was confirmed by dehydration (71%
yield) of 13 and submitting the product 15 to catalyst
4 in CH,Cl, at room temperature (Scheme 3). Nor-guai-
ane 16 was obtained in 61% yield after 3h reaction.

The RCM reaction was also carried out on substrate 11,
using Grubbs’ catalyst 4 (5mol %) and after 4h no start-
ing material was detected. Purification on silica gel sup-
plied a yellow oil, characterized as nor-guaiane 17
(Scheme 4) in 78% yield.

Compound 12 when subjected to catalyst 4, using the
same conditions but for 24h, followed by purification
by silica gel chromatography afforded guaiane 18 in
63% yield. Increasing the catalyst loading to 15mol%
and raising the reaction temperature to 40°C, gave no
improvement of yield.
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Scheme 4. Reagents and conditions: (a) Smol% of 4, CH,Cl,, rt, 4h;
(b) 5-15mol% of 4, CH,Cl,, rt, or reflux, 24h.
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We suggest'® that compounds 19 and 20 may be formed
initially from 11 and 12 by an RCM reaction, and then
through a sequence of hydrolysis and dehydration reac-
tions catalyzed by silica gel produce 17 and 18. The pos-
sible intermediates 21 could also be involved in the
formation of 17 and 18. Our interest in the RCM reac-
tion of 11 and 12 to 19 and 20 is due to their structural
similarity with dimeric ether guaianolides that have been
recently isolated!® and show strong antidiabetic activity.

In summary, we have developed a new synthetic route
for the perhydroazulene ring system using a ring-closing
metathesis reaction as a key step. Guaiane and nor-guai-
ane derivatives 16, 17, and 18 were synthesized in enan-
tiomerically pure forms from commercially available
(R)-(—)-carvone, together with spiro compound 10.
These guaiane derivatives are versatile advanced inter-
mediates for further functionalization, and open a path-
way for the synthesis of natural guaianes and related
compounds.
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